Topic: Crocheting the Permutation of Bells in Change Ringing
General idea: Visualizing the mathematics of bell-ringing through color-coded rows
Goal: Assign colours for the six bells in a Plain Bob Minor and crochet the permutations in rows (approximately 60-120)
Example:
Colour Legend: 1=Red, 2=Orange, 3=Yellow, 4=Green, 5=Blue, 6=Purple
Row 1: 1 2 3 4 5 6
sc in: Red, Orange, Yellow, Green, Blue, Purple
Row 2: 2 1 4 3 6 5
sc in: Orange, Red, Green, Yellow, Purple, Blue
Row 3: 2 4 1 5 3 6
sc in: Orange, Green, Red, Blue, Yellow, Purple
Row 4: 4 2 5 1 6 3
sc in: Green, Orange, Blue, Red, Purple, Yellow
Row 5: 4 5 2 6 1 3
sc in: Green, Blue, Orange, Purple, Red, Yellow
References:
Arthur T. White. (1983). Ringing the changes. Mathematical Proceedings of the Cambridge Philosophical Society, 94(2), 203–215. Cambridge University Press & Assessment
Gresham College. (2021, January 5). The mathematics of bell ringing [Lecture]. https://www.gresham.ac.uk/watch-now/maths-bellringing Gresham College
Jongrsde, et al. (2015). The mathematics of change ringing. (Bachelor’s thesis / project). Leiden University. Leiden University Math Publications
Nelson, A. (2020, February 25). The mathematics of bell ringing [Conference presentation]. GSAC Colloquium. https://annacnelson.github.io/assets/pdf/MathematicsOfBellRinging_2020Talk.pdf Anna C. Nelson
Polster, B., & Ross, M. (2007, October 15). Ringing the changes. The Age / QEDcat. QED Cat+1
Polster, B., & Ross, M. (2007). Mathematical Impressions: Change Ringing. Simons Foundation.Ringing Systems Web. (n.d.). Plain Bob Minor – Methods – Blueline. https://rsw.me.uk/blueline/methods/view/Plain_Bob_Minor
No comments:
Post a Comment